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Abstract. We study the (trace) order of the linearly invariant family in the ball
Bn defined by ∥SF∥ ≤ α, where F : Bn → Cn is locally biholomorphic and SF
is the Schwarzian operator. By adapting Pommerenke’s approach, we establish
a characteristic equation for the extremal mapping that yields an upper bound
for the order of the family in terms of α and the dimension n. Lower bounds for
the order are established in similar terms by means of examples.

1. Introduction

The purpose of this paper is to obtain an upper bound for the trace order of a
certain linearly invariant family of locally biholomorphic mappings defined in the
unit ball Bn in Cn. The family is defined in terms of the Schwarzian derivative
SF , which inherits from the Bergman metric in Bn a natural norm ||SF || that is
invariant under the automorphism group [3]. Disregarding certain normalizations,
the families Fα considered in this paper are defined by the condition ||SF || ≤
α. Linearly invariant families of holomorphic mappings were introduced in one
complex variable by Pommerenke in two seminal papers that offered a systematic
treatment of such families [11], [12]. He showed that relevant aspects of the family
F , such as growth and covering, are determined by its order supf∈F |a2(f)|. If Sf
is the usual Schwarzian derivative and ||Sf || = sup|z|<1(1− |z|2)2|Sf(z)|, then the
family of properly normalized locally univalent mappings in the disc D for which
||Sf || ≤ α is linearly invariant. By means of a variational method, Pommerenke

determined the sharp value
√
1 + 1

2
α for its order. In several variables, the concept

of order of a linearly invariant family appears in the form of the (trace) order and
the norm order, and both have implications on the growth of the family and on
estimates on the jacobian [2]. In this work, we mimic the variational approach
in several variables to estimate the order of Fα in terms of α and the dimension
n. Much like in the analysis found in [11], we are led to a characteristic equation
involving derivatives of order up to three that must be satisfied by any mapping
extremal for the trace order. The estimate on the trace order is then used to obtain
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a similar estimate for the norm order of the family Fα. In the final section, we
consider examples in all dimensions to find lower bounds for the order.

2. Preliminaries

In [10] T.Oda generalizes the concept of Schwarzian derivative to the case of
locally biholomorphic mappings in several variables. For such a mapping F =
(f1, . . . , fn) : Ω ⊂ Cn → Cn defined in a domain Ω in Cn, he introduces a family
of Schwarzian derivatives by

(2.1) Sk
ijF =

n∑
l=1

∂2fl
∂zi∂zj

∂zk
∂fl

− 1

n+ 1

(
δki

∂

∂zj
+ δkj

∂

∂zi

)
log JF ,

where i, j, k = 1, 2, . . . , n, JF = det(DF ) is the jacobian determinant of the difer-
ential DF and δki are the Kronecker symbols. Two important aspects of the one
dimensional Schwarzian are also present in this context. First,

(2.2) Sk
ijF = 0 for all i, j, k = 1, 2, . . . , n iff F (z) = M(z) ,

for some Möbius transformation

M(z) =

(
l1(z)

l0(z)
, . . . ,

ln(z)

l0(z)

)
,

where li(z) = ai0 + ai1z1 + · · ·+ ainzn with det(aij) ̸= 0. Next, under composition
we have the chain rule

(2.3) Sk
ij(G ◦ F )(z) = Sk

ijF (z) +
n∑

l,m,r=1

Sr
lmG(w)

∂wl

∂zi

∂wm

∂zj

∂zk
∂wr

, w = F (z) .

Thus, if G is a Möbius transformation then Sk
ij(G◦F ) = Sk

ijF. The S
0
ijF coefficients

are given by

S0
ijF (z) = (JF )

1
n+1

(
∂2

∂zi∂zj
(JF )−

1
n+1 −

n∑
k=1

∂

∂zk
(JF )−

1
n+1Sk

ijF (z)

)
.

One can find in the literature other equivalent formulations of the Schwarzian
in several variables, which also come in the form of differential operators of orders
two and three (see, e.g., [6], [7], [9]). In order to recover a mapping from its
Schwarzian derivatives we can consider the following overdetermined system of
partial differential equations,

(2.4)
∂2u

∂zi∂zj
=

n∑
k=1

P k
ij(z)

∂u

∂zk
+ P 0

ij(z)u , i, j = 1, 2, . . . , n ,

where z = (z1, z2, ..., zn) ∈ Ω and P k
ij(z) are holomorphic functions in Ω, for k =

0, . . . , n and i, j = 1, . . . , n. The system (2.4) is called completely integrable if there
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are n+ 1 (maximum) linearly independent solutions. The system is said to be in
canonical form (see [13]) if the coefficients satisfy

n∑
j=1

P j
ij(z) = 0 , i = 1, 2, . . . , n .

An important result established by Oda is that (2.4) is completely integrable and
in canonical form if and only if P k

ij = Sk
ijF for a locally biholomorphic mapping

F = (f1, . . . , fn), where fi = ui/u0 for 1 ≤ i ≤ n and u0, u1, . . . , un is a set of
linearly independent solutions of the system. It was also observed by Oda that

u0 = (JF )−
1

n+1 is always a solution of (2.4) with P k
ij = Sk

ijF .

The individual components Sk
ijF can be gathered to write an operator in the

following form (see[3]).

Definition 2.1. For k = 1, . . . , n let SkF be the matrix

SkF = (Sk
ijF ) , i, j = 1, . . . , n .

Definition 2.2. We define the Schwarzian derivative operator as the bilinear map-
ping SF (z) : TzΩ → TzΩ given by

SF (z)(v⃗) =
(
v⃗ tS1F (z)v⃗ , v⃗ tS2F (z)v⃗ , . . . , v⃗ tSnF (z)v⃗

)
,

where v⃗ ∈ TzΩ.

As an operator SF (z) inherits a norm from the metric in TzΩ:

(2.5) ∥SF (z)∥ = sup
∥v⃗∥=1

∥SF (z)(v⃗ )∥ ,

and finally, we let

(2.6) ||SF || = sup
z∈Ω

||SF (z)|| .

Our interest is to study certain classes of locally biholomorphic mappings F
defined in the unit ball Bn. The Bergman metric g on Bn is the hermitian product
defined by

(2.7) gij(z) =
n+ 1

(1− |z|2)2
[
(1− |z|2)δij + z̄izj

]
.

The automorphisms of Bn act as isometries of the Bergman metric, and are given
by

σ(z) =
Az +B

Cz +D
,
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where A is n× n, B is n× 1, C is 1× n and D is 1× 1 with

AtA− CtC = Id ,
|D|2 −BtB = 1 ,
AtB − CtD = 0 ,

(see, e.g., [5]).
By appealing to the chain rule (2.3), it was shown in [3] that

∥S(F ◦ σ)(z)∥ = ∥SF (σ(z))∥ ,

from which

(2.8) ∥SF∥ = ∥S(F ◦ σ)∥ .

In this paper we will consider the family Fα defined by

Fα = {F : Bn → Cn | F locally biholomorphic , F (0) = 0 , DF (0) = Id , ∥SF∥ ≤ α } .

The family Fα is linearly invariant and also compact [3]. We are interested in
studying its (trace) order [2], given by

(2.9) ordFα = sup
F∈Fα

sup
|w|=1

1

2

∣∣∣∣∣
n∑

i,j=1

∂2fj
∂zi∂zj

(0)wi

∣∣∣∣∣ .
Because the family is compact, the order is finite. An equivalent form of the order
is given by

Aα = sup
f∈Fα

|∇(JF )(0)| ,

which is shown in [3] to satisfy

Aα = 2ordFα .

A second measure of the size of a linearly invariant family F is given by the norm
order, defined by

||ord||F = sup
f∈F

1

2
||D2F (0)|| ,

where

F (z) = z +
1

2
D2F (0)(z, z) + · · · .

In general, ordF ≤ n||ord||F . For the family Fα in particular, it was shown in [3]
that

(2.10) 1 +

√
3

2
α ≤ ||ord||Fα ≤ 2

n+ 1
ordFα +

√
n+ 1

2
α .
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3. Variations and Extremal Mappings

Let F0 ∈ Fα be a mapping for which Aα is maximal, with ∇(JF0)(0) = Λ =
(λ1, . . . , λn). Let σ be an automorphism of Bn with σ(0) = ζ, and consider the
Koebe transform

G(z) = Dσ(0)−1DF0(ζ)
−1 [F0(σ(z))− F0(ζ)] .

The mapping G ∈ Fα represents a variation of the extremal mapping F0 when |ζ|
is small. With this in mind, we need to compute ∇(JG)(0). We have that

DG(z) = Dσ(0)−1DF0(ζ)
−1DF0(σ(z))Dσ(z) ,

hence
JG(z) = Jσ(0)−1JF0(ζ)

−1JF0(σ(z))Jσ(z) ,

so that

(3.1) ∇(JG)(0) =
∇(JG)

JG
(0) =

∇(JF0)

JF0

(ζ)Dσ(0) +
∇(Jσ)

Jσ
(0) .

In order to proceed with the analysis, we need the expansion of∇(JG)(0) in powers
of ζ.

Lemma 3.1. Let

Bij =
n∑

k=1

Sk
ijF0(0)λk , B0

ij = S0
ijF0(0) .

Then

∇(JF0)

JF0

(ζ) = Λ + A · ζ +O(|ζ|2) , |ζ| → 0 ,

where A = (Aij) is the matrix given by

(3.2) Aij = Bij − (n+ 1)B0
ij +

λiλj

n+ 1
.

Proof. Let u0 = (JF0)
− 1

n+1 and ϕ(ζ) = ∇(JF0)
JF0

(ζ). Then ϕ(0) = Λ because

JF0(0) = 1. We have that ϕ = (ϕ1, . . . , ϕn), where

ϕi(ζ) = ∂i log(JF0)(ζ) = −(n+ 1)∂i(log u0)(ζ) , ∂i = ∂/∂zi .

Since u0 is a solution of (2.4) with u0(0) = 1 and ∇u0(0) = − 1
n+1

∇(JF0)(0), we

see that

∂jϕi(0) = −(n+ 1)∂j

[
∂iu0

u0

]
(0) = −(n+ 1)

[
∂2
iju0(0)− ∂iu0(0)∂ju0(0)

]
,

= −(n+ 1)

[
− Bij

n+ 1
+B0

ij −
λiλj

(n+ 1)2

]
,
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which gives that the differential Dϕ(0) is given by the matrix A = (Aij). This
proves the lemma. �
Lemma 3.2. With the notation as before, one can choose σ so that

Dσ(0) = Id +O(|ζ|2) ,
∇(Jσ)

Jσ
(0) = −(n+ 1)ζ .

Proof. Assume first that σ(0) = ζ = (ζ1, 0, . . . , 0). Then we may take

σ(z) =

(
z1 + ζ1

1 + ζ1z1
,

√
1− |ζ1|2z2
1 + ζ1z1

, . . . ,

√
1− |ζ1|2zn
1 + ζ1z1

)
,

and one finds that

Jσ(z) =
(1− |ζ1|2)

n+1
2

(1 + ζ1z1)
n+1

,

together with

Dσ(0) =


(1− |ζ1|2) 0 0 · · · 0

0
√
1− |ζ1|2 0 . . . 0

0 0
√

1− |ζ1|2 · · · 0
...

...
...

...
...

0 0 0 · · ·
√
1− |ζ1|2

 ,

from which the lemma follows for ζ of the form (ζ1, 0, . . . , 0). The general case

obtains after considering a rotation of the ball. �
In light of Lemmas 3.1 and 3.2, we can rewrite equation (3.1) as

(3.3) ∇(JG)(0) = Λ + A · ζ − (n+ 1)ζ +O(|ζ|2) .

Theorem 3.3. Let F0 ∈ Fα be extremal for the order, with ∇(JF0)(0) = Λ. Then

(3.4) A · Λ = (n+ 1)Λ .

Proof. The proof is based on the observation that, in reference to equation (3.3),
we must have

|∇(JG)(0)| ≤ |Λ| , |ζ| → 0 .

Let ⟨v, w⟩ = v1w1 + · · ·+ vnwn. Then

|∇(JG)(0)|2 = |Λ|2 +Re⟨Λ, A · ζ⟩ − 2(n+ 1)Re⟨Λ, ζ⟩+O(|ζ|2)
= |Λ|2 + 2Re⟨At · Λ− (n+ 1)Λ, ζ⟩+O(|ζ|2) .

Since ζ = (ζ1, . . . , ζn) can be chosen small but otherwise arbitrary, we conclude
that

At · Λ− (n+ 1)Λ = 0 ,
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which proves the theorem because At = A. �
In order to facilitate the use of equation (3.4) to estimate the order of Fα, we use

linear invariance to assume that Λ = (λ, 0, . . . , 0) with λ > 0. This normalization
has a decoupling effect on (3.4), with the matrix A now given by

(3.5) Aij = S1
ijλ− (n+ 1)S0

ij +
δ1i δ

1
j

n+ 1
λ2 ,

where Sk
ij = Sk

ijF0(0). By equating the first components of (3.4) we obtain

(3.6) λ2 + (n+ 1)S1
11λ− (n+ 1)2S0

11 − (n+ 1)2 = 0 ,

while the remaining components give

(3.7) S1
1jλ− (n+ 1)S0

1j = 0 , j = 2, . . . , n .

We are now in position to estimate the order of the family Fα.

Theorem 3.4. The order of Fα satisfies

(3.8) ordFα ≤ 1

2
(n+ 1)

[
1

2

√
n+ 1α +

√
1 +

1

4
(n+ 1)α2 + C(n, α)

]
,

where
C(n, α) ≤ 6n2α2 + 16

√
nα .

Proof. From (3.7), we see that(
λ+

1

2
(n+ 1)S1

11

)2

= (n+ 1)2
(
1 +

1

4
(S1

11)
2 + S0

11

)
.

In [3], the following bounds were established for the quantities S1
11, S

0
11:

|S1
11| ≤

√
n+ 1α , |S0

11| ≤ C(n, α) ,

where

C(n, α) =

(
4n2 + 2n− 2 +

n+ 1

n− 1

)
α2 +

(
4
√
n+ 1 + 8

√
n+ 1

n− 1

)
α .

The inequality (3.8) follows at once from the estimates on S1
11, S

0
11. Finally, it is

not difficult to see that

C(n, α) ≤ 6n2α2 + 16
√
nα .

�
The following corollary is obtained at once from (2.10).

Corollary 3.5. For the family Fα we have

||ord||Fα ≤ (n+ 1)α+

√
1 +

1

4
(n+ 1)α2 + C(n, α) .
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4. Some Examples

In this section we construct examples in all dimensions to establish lower bounds
for the Aα. When n = 1 the task of constructing good examples is much simpler
due to the nature of the differential equation associated with the Schwarzian. In
fact, in this way one can show the sharpness of the estimate obtained from the
variational method. In several variables, the complexity of the Schwarzian system
is considerably higher. To simplify matters, we will consider the case when all Sk

ijF
are constants. Two lemmas will be important in this process. The first lemma was
established in [1], but we include the proof for the convenience of the reader.

Lemma 4.1. Let u be a solution of a completely integrable system of the form ( 2.4)
with P k

ij = Sk
ijF for some locally biholomorphic mapping F defined in Ω. Then there

exists a Möbius transformation T such that u = (JG)−
1

n+1 for G = T ◦ F .

Proof. We write F = (u1/u0, . . . , un/u0) for n + 1 linearly independent solutions

u0, u1, . . . , un of (2.4) with u0 = (JF )−
1

n+1 . Then u = b0u0 + b1u1 + · · ·+ bnun for

some unique constants bi. A simple calculation shows that (JT )−
1

n+1 = a0+a1w1+
· · ·+ anwn = l0(w) whenever T is a Möbius of the form (w1/l0(w), . . . , wn/l0(w)).
Then

(J(T ◦ F ))−
1

n+1 = (JT (F ))−
1

n+1 (JF )−
1

n+1

= (a0 + a1f1 + · · ·+ anfn)u0

= a0u0 + a1u1 + · · ·+ anun ,

hence it suffices to choose T with the property that (JT )−
1

n+1 = b0+b1z1+· · ·+bnzn.
Note that the zero set of u is given by the hypersurface a0 + a1f1 + · · ·+ anfn = 0,
that is, exactly the set where G becomes singular. �

It follows from the lemma that if u ̸= 0 is a solution of (2.4), then the mapping
G will be regular in Ω. Thus, for the purpose of finding lower bounds for the order,
it will suffice to exhibit solutions u that are non-vanishing in Bn, and which have
u(0) = 1 together with |∇u(0)| large in comparison to the norm ||SF || = ||SG||.
The second lemma, of general interest, involves estimating ||SF || when all Sk

ijF
are constant.

Lemma 4.2. Let F be a locally biholomorphic mapping defined in Bn for which
Sk
ij are constant, for all i, j, k. Then ||SF || = ||SF (0)||.

Proof. The Bergman metric applied to vector v⃗ can be expressed by

∥v⃗∥2 = n+ 1

(1− |z|2)2
[
(1− |z|2)|v⃗|2 + |z1v1 + · · · znvn|2

]
,
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where z = (z1, . . . , zn) and v⃗ = (v1, . . . , vn). Using the Cauchy-Schwartz inequality,
we have that

∥v⃗∥2 ≤ n+ 1

(1− |z|2)2
|v⃗|2 .

Suppose that F has Sk
ijF constants. Thus

∥SF (z)(v⃗, v⃗)∥ ≤ |SF (z)(v⃗, v⃗)|
√
n+ 1

1− |z|2
.

But ∥v⃗∥ = 1, therefore |v⃗|2 ≤ (1− |z|2)/(n+ 1) and

∥SF (z)(v⃗, v⃗)∥ =

∥∥∥∥SF (z)

(
v⃗

∥v⃗∥0
,

v⃗

∥v⃗∥0

)∥∥∥∥
0

∥v⃗∥20
1− |z|2

≤
∥∥∥∥SF (z)

(
v⃗

∥v⃗∥0
,

v⃗

∥v⃗∥0

)∥∥∥∥
0

,

where ∥ · ∥0 means the Bergman metric at the origin. Taking supremum over
∥v⃗∥ = 1 we have that

∥SF (z)∥ ≤ ∥SF (z)∥0 = ∥SF (0)∥ .
�

Theorem 4.3. The order of the family Fα satisfies

(4.1) ordFα ≥ 9

4
α , n = 2

(4.2) ordFα ≥ 1

2

(n+ 1)
3
2

n− 1
α , n > 2 .

Proof. We will exhibit a non-vanishing solution u of (2.4) that satisfies u(0) = 1
and ∇u(0) large. In the system we let S1

11F = −
√
n+ 1α and S1

1jF = 0 for
j = 2, . . . , n. The integrability conditions allow us to set

Sk
1kF =

√
n+ 1

n− 1
α , k = 2, . . . , n .

With v = (v1, . . . , vn) we have that

SF (0)(v⃗) =

(
−
√
n+ 1α v21 , 2

√
n+ 1

n− 1
α v1v2 , . . . , 2

√
n+ 1

n− 1
α v1vn

)
,

and so

∥SF (0)(v⃗)∥2 = (n+ 1)2α2

[
|v1|4 +

4

(n− 1)2
|v1|2(|v2|2 + · · ·+ |vn|2)

]
.

But ∥v⃗∥ = 1, hence

∥SF (0)(v⃗)∥2 = (n+ 1)2α2|v1|2
[
|v1|2 +

4

(n− 1)2

(
1

n+ 1
− |v1|2

)]
.
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In order to determine the maximum value of ∥SF (0)(v⃗)∥ we consider the function

h(x) = x

[
4

(n− 1)2(n+ 1)
+

(
1− 4

(n− 1)2

)
x

]
in the interval x ∈ [0, 1/(n+1)]. The analysis of the maximum value of h(x) must
take into consideration that the term 1 − 4(n − 1)−2 is negative for n = 2 and
positive for n > 2.
For n = 2, the function h(x) = (4/3)x − 3x2, which attains its maximum at

x = 2/9 with h(2/9) = 4/27. Therefore

||SF (0)|| = 2√
3
α = β .

By Lemma 4.2, ||SF || = (2/
√
3)α.

For n > 2, the function h(x) attains its maximum at x = 1/
√
n+ 1, with

corresponding maximal value

1

n+ 1

(
4

(n− 1)2(n+ 1)
+

[
1− 4

(n− 1)2

]
1

n+ 1

)
=

1

(n+ 1)2
.

Therefore ∥SF (0)∥2 = α2, or equivalently,

∥SF (0)∥ = α .

By Lemma 4.2, then ||SF || = α.

On the other hand, the system reads

u11 = −
√
n+ 1αu1 +

n
√
n+ 1

n− 1
α2u

u1j =

√
n+ 1

n− 1
αuj , j > 1

uij = 0 , i, j > 1 .

Consider the solution with u(0) = 1 and ∇u(0) = (λ, 0, . . . , 0). Since uij = 0 for
all i, j > 1, then

u(z) = an(z1)zn + an−1(z1)zn−1 + . . . a2(z1)z2 + a1(z1) .

Now, ∂u/∂zj = aj(z1) for j > 1. From the second equation we have that

a′j(z1) =

√
n+ 1

n− 1
αaj(z1) ,

which implies that for constants cj

aj(z1) = cje
√

n+1
n−1

αz1 , j > 1 .
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Since ∇u(0) = (λ, 0, . . . , 0) it follows that aj(0) = 0, therefore cj = 0 an aj ≡ 0 for
j > 1. We conclude that

u(z) = a1(z1) .

With the notation a1(z1) = a(z) we use the first equation of the system

a′′(z) = −
√
n+ 1α a′(z) +

n
√
n+ 1

n− 1
α2a(z) ,

to conclude that

u(z) = a(z1) = C1e
√
n+1
n−1

αz1 + C2e
−n

√
n+1

n−1
αz1 .

Considering that a(0) = 1 and a′(0) = λ, and putting λ =
√
n+ 1/(n− 1)α, then

u(z) = e
√

n+1
n−1

αz1 ,

which does not vanish in Bn.

Suppose n = 2. By Lemma 4.1 and the preceding analysis, there exists G ∈ Fβ

with JG = u−3. Hence ∇(JG)(0) = −3∇u(0) = −3
√
3α = 9

2
β, which shows that

Aβ ≥ 9
2
β, and thus proving (4.1).

By the same token, for n > 2 there exists G ∈ Fα with JG = u−(n+1). This
mapping has ∇(JG)(0) = −(n+ 1)

[√
n+ 1/(n− 1)

]
α, which proves (4.2). �
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